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Summary 

Integrated Pest Management (IPM) strategies lead to the cost effective management of 

pests in stored grains. Although significant advances have been made in fumigation 

technologies, storage types and insecticide treatment regimes worldwide, numerous 

countries still do not have a single cohesive integrated approach to pest management. This 

in part is due to the lack of simple, robust statistical sampling techniques for use in IPM, for 

example to detect insects at a pre-determined treatment threshold. In this study we extend 

theory previously developed in this project to consider detection thresholds of greater than 

zero, and show that this provides a sound basis for IPM decisions. Using a case study we 

demonstrate that setting a treatment threshold for fumigation of grain and using the new 

methodology for sampling can reduce the number of fumigations applied and thus 

substantially cut costs by up 17% depending on environmental conditions. The new 

methods we have developed and present in this report provide an important step towards 

evidence based IPM in Australia.  
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Introduction 

Improving insect control methods has been has been a primary focus of stored product 

research for many years (Hagstrum and Subramanyam 2006). While chemical controls have 

often been central to management of insect pest within storages (Longstaff 1994), reliance 

on chemical control methods can be costly in the long term. Some chemical controls are 

expensive making them not cost effective as the sole control strategy, whilst the use of 

residual insecticides can lead to trade restriction (Hagstrum and Subramanyam 1996). In the 

longer term, the critical problem of over reliance on chemicals as the sole control 

mechanism for insect management is the development of resistance to control agents 

(Herron 1990). Resistance, particularly to cost effective fumigants such as Phosphine, is one 

of the greatest threats to the global grains supply and production industry (Herron 1990).   

In recent years stored product research has placed a greater focus on developing alternative 

technologies to control insects, in part as a response to issues arising from fumigant 

resistance (Hagstrum and Subramanyam 2006). This has culminated in the development of 

integrated pest management (IPM) strategies which aim to use a range of technologies to 

achieve a higher level of control than could be achieved using one control method in 

isolation (Scholler et al. 1997, Kogan 1998, Hagstrum et al. 1999). IPM programmes for 

stored products use a broad range of techniques including fumigation, insecticide 

application, aerations, hygiene and improved storage as a means to maximise control 

outcomes (Hagstrum and Subramanyam 2006).  

The combination of control techniques used within IPM programmes are intended to 

efficiently manage individual species within specific regions at specific periods of time 
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(Kogan 1998). It is therefore important to determine when and where particular techniques 

are most effective (Kogan 1998). For example, aeration is a strategy which aims to maintain 

grain temperature at a level that is suboptimal for pest development and is most effective in 

cooler conditions prior to insect populations reaching high densities. While fumigants, in 

contrast, can be applied year round, they will be most cost effective when insect densities 

reach a threshold where damage is economically important (Hagstrum and Subramanyam 

1996). Therefore, as the efficacy of treatments varies depending on conditions and pest 

pressure IPM programmes aim to utilise various treatments when they are most efficacious 

to maximise control outcomes (Kogan 1998). 

Although the need and benefits of IPM are broadly accepted (Rees 2004), many grain 

producing nations still do not have an industry wide IPM control strategy. Control strategies 

vary significantly and are often more concerned with the immediate availability of grain 

than long term control success. For example, countries which base sampling on a zero 

tolerance framework such as Australia and Canada may manage grain bulks by sampling on 

purchase and sale of the grain, and undertake regular (calendar based) fumigations during 

the time in which the grain stored. This can be costly in the short term because there is a 

high likelihood that fumigations will be undertaken when none are needed (Subramanyam 

and Hagstrum 2006). In the longer term, there is a strong possibility that such strategies can 

lead to large, industry wide losses because excessive fumigation is closely related to 

insecticide resistance in grain pests (Collins et al. 2000).  

Treatment thresholds, where treatments are only initiated when pests reach a specified 

density, can be used to ensure fumigations are only conducted when required. IPM 

programmes under this regime need to be based on a robust sampling programme with a 
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pre determined threshold, which allows for detection of pests at particular population 

densities (Kogan 1998). As such, sampling programmes provide a means to determine when 

particular control methods should be used (Kogan 1998). Within grain storages for example, 

pest density as well as other external factors such as temperature and humidity will 

determine the type of control strategy that will be most effective. If insect densities are low 

and conditions are not conducive to rapid insect growth, control may be delayed or may be 

undertaken via the use of a technique such as aeration, which has lower efficacy than 

phosphine fumigation or residual chemical use, but still provides an effective method to 

maintain population densities at substantially lower cost. In contrast, if insect densities are 

high, a more costly strategy with higher efficacy (e.g. chemical application or fumigation) 

may be used. When particular strategies are initiated is thus dependent on the density of 

pests and an effective sampling programme to identify that density. For example, in United 

States grain storages, insect densities greater than 2 insect per kilogram are required to be 

treated (Subramanyam et al. 1997, Hagstrum et al. 1999) and therefore effective sampling is 

required to detect at that level.  

Sampling strategies for IPM must maximise detection and estimate the density of the 

species of interest accurately within the environment (Kogan 1998). In stored grains a 

number of sampling plans have been developed based on a fixed number of samples to 

determine mean density estimates within storages (Hagstrum et al. 1985, Lippert and 

Hagstrum 1987, Subramanyam et al. 1993). Further, Subramanyam et al. (1997) developed a 

sequential sampling plan to estimate population density for management. Although 

effective, robust parameter estimates for these approaches are heavily reliant on the 



Case study 3 – Sampling grain based on detection thresholds – CRC 30086 

 

 

 
6 

availability of existing data with models being parameterised specifically for individual 

species. Furthermore models can be complex for end users to interpret and use.  

Alternative sampling models have been developed, that focus on maximising the probability 

of detecting insect for a zero tolerance approach, i.e. to determine the freedom of insects 

from a bulk (Hunter and Griffiths, Love et al. 1983, Jeffries 2000). While these methods do 

not depend on specific pre-existing data to parameterise models, they are not suitable for 

use in IPM where estimating a threshold density is more relevant than simply determining if 

insects are present within storage.  It is therefore valuable to develop methods to detect 

pest species at thresholds greater than zero for use in IPM which allow managers to simply 

identify pest levels in bulks at minimal costs.  

Elmouttie et al. (2010) proposed a methodology to determine the number of samples 

required to maximise detection of insect pests within storages for zero tolerance 

management. Similar to previous methodology (Hunter and Griffiths 1978, Hagstrum et al. 

1985) this approach considered insect density however also explicitly accounted for the 

potential insect infestations to be heterogeneously distributed within a grain lot. Thus 

rather than being based on parameters to describe insect spacing behaviour (Hagstrum et 

al. 1985) or the relationship between sample means and variances that may be difficult to 

calculate (Hagstrum et al. 1985, Lippert and Hagstrum 1987, Subramanyam et al. 1993) the 

model was based on two biologically relevant parameters, the proportion of grain infested 

and the density of the infestation within the infested portion.  

This study aims to expand the approach proposed by Elmouttie et al. (2010) by investigating 

the influence of alternative detection thresholds on sampling intensity. We investigate how 
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model behaviour is affected by alternative detection threshold and what effect this has on 

the probability of detection. We demonstrate that sampling with a methodology which 

considers alternative detection thresholds increases the accuracy of sampling programmes 

for detecting targets pests at a treatment threshold when compared to a zero tolerance 

approach and thus has important implications for IPM. Finally we demonstrate that the 

approach developed here can be used to implement management strategies when most 

required and that significant cost savings can be achieved when treatments are 

administered based on a threshold rather than on a calendar based system.      
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The Model 

Model Development 

Elmouttie et al. (2010) proposed an approach for sampling insects in grain storages in which 

insect distribution is heterogeneous. Unlike other approaches, this approach explicitly 

divided grain lots into insect infested (p) and un-infested areas (1-p). Probability of detection 

is related to the proportion of grain infested (p), the weight of samples drawn, (w) and the 

density of insects (λ) within the infested portion of the lot, (p) and given by:   

 

The principle focus for model development was to detect the presence of insects and 

therefore the method was developed to consider the probability of sampling a 

heterogeneous grain lot and detecting no insects i.e. when a = 0.   

 

 

 

 

Thus the probability of detection can be shown to be: 

 

   (Equation 1) 

 

When developing IPM strategies detection at alternative detection thresholds may be of 

interest, that is when a ≠ 0. Thus the probability of detection when a ≠ 0 is given by: 

 

    (Equation 2) 
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The method allows for various detection thresholds to be established. Detection is given 

when the number of insects throughout the grain sampled is equal to or greater than the 

detection threshold. 

Model behaviour and cost analysis 

Sampling intensity (the number of samples drawn to detect insects) is of primary 

importance to end users. In both equations 1 and 2 sampling intensity (n) will vary in 

relation to a number of factors including the proportion of the lot infested (p), the density of 

infestation (λ) and the size of the sample drawn (w). However in equation 2 detection 

thresholds will also affect sampling intensity (n).   We therefore examine how alternative 

thresholds (a) influence sampling intensity. To do so we examine the effect of three 

thresholds, a > 0 (more than 0 insects detected), a ≥ 2, (2 or more insects are detected) and 

a ≥ 5 (5 or more insects are detected).  Finally we consider the implications of treatments 

(fumigations) being based on insect detection thresholds rather than as a regular schedule 

that ignores infestation levels. We do so by considering three scenarios: a) treatment 

occurring on a regular quarterly bases (4 fumigations per year) with no sampling; b) an 

intensive sampling programme, where treatment is based on detection of insects at 

predetermined treatment threshold and sampling occurs on a monthly basis commencing 

30 days from fumigation clearance; and c) a low intensity sampling programme, where 

treatment is based on detection at a threshold and sampling occurs 60 days after fumigation 

clearance. Cost benefit analysis is conducted using current cost estimates for fumigation 

using phosphine from the Australian production region and a fixed hourly labour rate.      
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Model Application 

When sampling grain for either IPM or for detection, of primary interest is the number of 

samples required to achieve a given level of confidence.  We therefore investigate the effect 

of various sampling thresholds (a = 0, a = 2, a =5) on the number of samples required for a 

probability of detection of 0.95. Estimates for insect density (λ) in the infested portion of the 

lot are set at 2 and 10, whilst initially we consider a scenario where p = 0.2, that is, 20% of 

the lot is infested. Note that an infestation of 10 insect per kilogram (λ = 10) over 20% of the 

lot equivalent to 2 insect per kilogram over the entire lot which represents the threshold for 

treatment in the USA. 
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Figure 1 a and b. The probability of detecting insects at three alternative detection thresholds (a = 0, 

a= 2, a=5) when (a) insect density λ = 2 and (b) insect density λ = 10. The weight of samples is held 

constant (w = 1kg) as is the proportion of the lot infested (p = 0.2). (a = 0 ...., a = 2 _.._, a=5 _ _) 

As the probability of detection increases the number of samples required to detect insects 

also increases irrespective of detection thresholds. When the density of insects is low 

however (λ = 2), detection at higher thresholds requires substantially more samples to be 

drawn to achieve the same probability of detection (figure 1a). In contrast, when the density 

of insects is high (λ = 10) the number of samples required to detect is equivalent for all 

thresholds (figure 1b).  
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In this example the proportion of the lot infested remained constant (p = 0.2). However the 

proportion of the lot infested p, may also influence the probability of detection at 

alternative threshold. We now consider the probability of detection in a situation where the 

infestation is more widespread in the grain bulk, where p = 0.5 and infestation rates of λ = 2 

and λ = 10 (Figure 2a and b).   
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Figure 2 a and b. The probability of detecting insects at three alternative detection thresholds (a = 0, 

a= 2, a=5) when (a) insect density λ = 2 and (b) insect density λ = 10. The weight of samples is held 

constant (w = 1) and the proportion of the lot infested also is held constant (p = 0.5). (a = 0 ...., a = 2 

_.._, a=5 _ _) 

When insect density is low (λ = 2) the number of samples required to detect insects 

increases as the detection thresholds increases (figure 2a). However similarly to the first 

example, when the density of insects in the lot is high (λ = 10) the number of samples 

required to detect is equivalent across all thresholds.  Of interest however, when a zero 

tolerance threshold is set, the number of samples required to detect high and low densities 

a = 0 

a = 5 

a = 2 
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of insects within the infested portion of the lot is the same (Figures 1 a and b, Figure 2 a and 

b). Detection thresholds therefore provide a mechanism to discriminate between treatment 

thresholds based on both the density of the infestation (λ) and the proportion of the lot 

infested (p) (Figures 1 a and b, Figure 2 a and b). As demonstrated, if a threshold of a = 0 is 

set, it is impossible to determine if the density within the infested portion of the lot is two (λ 

= 2) or greater as the number of samples required to detect these thresholds is equivalent 

(Figures 1 a and b, Figure 2 a and b). This lack of discrimination occurs because at a 

threshold of a = 0, a detection is recorded whether 1 or 50 insects is found within a sample 

and additional insects are not accounted for. In the examples provided, sampling at a 

threshold of a = 5 when the density in the infested portion of the lot is high (λ = 10) does not 

require more samples to be taken to maximise detection for a given probability of detection 

(e.g. 0.95) than the other thresholds examined. However, when the density in the infested 

portion of the lot is low, more samples are required to achieve the equivalent probability of 

detection for higher thresholds. This occurs as the density of insects within the infested 

portion of the lot increases, the probability that samples will contain multiple insects also 

increases.  However, as the density in the infested portion of the lot decreases there is a 

corresponding decrease in the probability of detecting a greater number of insects within 

the samples taken. As such, detection thresholds provide end-users a method to ensure that 

the proportion of the lot infested and the density within that infested portion corresponds 

to the pre-determined treatment threshold.   

In the above examples both the density of the infestation (λ) and the proportion of the lot 

infested (p) affected the probability of detection at a given sampling intensity (n) and 

sample size (w). Below we examine these factors independently on the probability of 
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detection. We explore how these factors affect the probability of detection at three 

detection thresholds (a=0, a=2, a=5). (Figure 3 a and b).  
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Figure 3 a and b. Probability of detecting insects within a grain lot at various detection thresholds as 

a function of (a) infestation rate where (p) is held constant at 1 and (b) the proportion of the lot 

infested where insect density (λ) is held constant at 1. 

a = 0 a = 5 a = 2 



Case study 3 – Sampling grain based on detection thresholds – CRC 30086 

 

 

 
17 

Across all detection thresholds an increase in the density of infestation or the proportion of 

the lot infested leads to an increase in the probability of detection (Figure 3 a & b). However 

at higher detection threshold the probability of detection increases more slowly than when 

thresholds are lower. Although not surprising this has significant implications for developing 

IPM strategies. From a management perspective the density of pests and the distribution 

will influence growth and therefore dictate treatment regimes. As such detection thresholds 

should be based on both insect distribution and insect density. 

 

Sampling and Treatment costs 

A key factor that will drive decision making along the grain supply chain is the costs or 

savings that will result from changed management practices. Here we consider the costs of 

sampling and treatment at an arbitrary action threshold basing results on current Australian 

practices and costs.  It is common practice for fumigations to be conducted on a calendar 

basis with approximately four fumigations conducted per year (every three months) with no 

pre-fumigation sampling. This fumigation pattern will be used as the baseline for cost 

benefit analysis. As economic treatment thresholds have not yet been determined for 

Australian storages we consider a scenario in which treatment is initiated when 5 insects are 

detected (threshold a = 5) using infestation parameters of 20% of the grain being infested 

(p = 0.2) and a mean density of insects in infested portions equal to 10 (λ = 10). As shown 

in Elmouttie et al. (2010), these parameters are realistic for Australian conditions. This also 

equates to 2 insects per kilo (as per the USA treatment threshold) (Hagstrum et al. 1999). A 

threshold of a = 5 is selected as this provides the greatest certainty that the density of 



Case study 3 – Sampling grain based on detection thresholds – CRC 30086 

 

 

 
18 

insects within the infested portion of the lot is equal to 10 however does not result in added 

sampling effort. This is illustrated in figure 1 a and b where sampling intensity (number of 

samples to be drawn) is no different between a = 0, a= 2 or a = 5 when λ = 10 for the 

equivalent probability of detection.  As such, setting a higher threshold provides no added 

cost however provides greater confirmation that the density of insects is at the level 

expected. Detection at these parameters, would require 15 x 1kg samples to be drawn at a 

95% probability of detection (Figure 1b).  

To illustrate potential cost savings we consider sampling and fumigation under 3 different 

scenarios: Scenario 1 is a calendar based fumigation plan where fumigations are conducted 

on a three monthly basis and no sampling is undertaken; Scenario 2 where sampling is  

conducted monthly commencing 30 days after fumigation clearance and detection at the 

threshold (a = 5) is required for treatment; and Scenario 3 where sampling is conducted 

monthly commencing 60 days after fumigation clearance and detection at the threshold (a 

= 5) is required for treatment. For simplicity we consider that Rhyzopertha dominica to be 

the only target pest and sampling is conducted in a 20 000 tonne bunker sealed bunker with 

no emigration or immigration of insects. We assume initial population density within the 

bunker is 0.025 insects per kilogram, and grain temperature is maintained at 25°C and grain 

moisture at 11.5%. Population growth rate is predicted as per (Hagstrum 1996).      
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Table1. Costs associated with fumigation and sampling under 3 sampling scenario, a) calendar based 

fumigation with no sampling, b) sampling one month after fumigation and fumigation on detection 

at threshold, and c) sampling 2 month after fumigation and fumigation on detection at threshold. 

Fumigation costs are based on industry estimates for labour associated with application of 

Vaporphos at 1 gram per tonne for a 20,000 tonne bunker, plus bunker clearance and monitoring 

costs. Sampling costs are based on 4 hours labour at current rates ($ 50AUD/ hour). (N = No action 

take, S = Sampling conducted, D = detection at threshold a = 5 , F = Fumigation) 

 Scenario 1 Scenario 2 Scenario  3 

Month Sample Treat Cost Sample Treat Cost Sample Treat Cost 

1 N N  N N  N N  

2 N N  S N 200 N N  

3 N F 3800 S N 200 S N 200 

4 N N  SD F 4000 SD F 4000 

5 N N  N N  N N  

6 N F 3800 S N 200 N N  

7 N N  S N 200 S N  

8 N N  SD F 4000 SD N 4000 

9 N F 3800 N N  N N  

10 N N  S N 200 N N  

11 N N  S N 200 S N 200 

12 N F 3800 SD F 4000 SD N 4000 

Total 0 4 15200 6 3 13200 5 2 12600 

 

Table 1 illustrates even when sampling time and cost are unrealistically high ($200 / 4 hours 

for 15 samples) if less than 4 fumigation treatments are used this will provide a cost saving. 

In fact, Scenario 2 and 3 shows that if fumigation is reduced by only a single fumigation 
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treatment annually, substantial cost savings can be achieved (up to 17%) even if sampling is 

conducted over 9 months of the year.   



Case study 3 – Sampling grain based on detection thresholds – CRC 30086 

 

 

 
21 

Discussion 

In this study we have developed a robust methodology for determining the sampling 

intensity needed to detect insects at an arbitrary threshold. As we show, this can be 

particularly useful for developing sampling plans and assessing treatment thresholds for use 

in stored grains IPM strategies. Results from this study illustrate that the addition of 

alternative detection thresholds into the statistical sampling model proposed by Elmouttie 

et al. (2010) provides a means to ensure treatments are administered during periods that 

they will be most effective. Most significantly, when this method is coupled with an 

appropriate threshold for treatment, we show that costs of managing bulk grain can be 

substantially decreased. Clearly the capacity to do this will depend on the growth rate of 

insects in bulk grain, which in turn will depend on temperature and humidity (Hagstrum 

1996). Nonetheless, the scenarios we have presented here are realistic for Australian 

conditions and based on growth models of (Hagstrum 1996).  In the cost comparison we 

show that if sampling to an action threshold leads to the reduction of even a single 

fumigation, a reduction in costs of up to 17% per bunker can be made. 

In this study we have illustrated that the rate of infestation and the proportion of the lot 

infested will have a significant effect on the probability of detection for various detection 

thresholds (figures 1 a and b and figure 2 a and b). This occurs as irrespective of detection 

threshold, the probability of detection will involve both sampling an infested portion of the 

lot and detecting insects within the infested area. This has significant implications for 

storages managers. Typically IPM programmes have been designed considering a mean 

density of insects across a grain bulk (Hagstrum et al. 1985, Subramanyam et al. 1993, 

Hagstrum et al. 1997). Unlike mean based approaches the methodology proposed in this 
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study involves detection thresholds being based on both the proportion of the lot infested 

and the density of insect pests. As such when developing effective treatment thresholds, 

consideration of both parameters will be required. 

Although developing thresholds based on 2 parameters may seem initially to be more 

complex it does allow variation based on different environmental conditions to be 

incorporated into IPM programme. It has been well established that storage type, climatic 

condition and grain moisture will effect population growth and distribution (Hagstrum 1996, 

Athanassiou et al. 2003, Nansen et al. 2009). As such IPM programmes should be based not 

only on a mean estimate of insects, but also consider factors which may influence 

population growth in the area (Kogan 1998). In Australia for example, where grain moisture, 

storage temperature and grain type vary significantly across the continent (Rees 2004), 

thresholds developed for specific regions based not only on density of the infested portion 

of the lot (λ) but also on the proportion of the lot infested (p) may provide greater benefits 

in relation to management.  

A key finding of this study is that when an appropriate threshold is chosen for a target 

density within the infested portion of the lot, sampling intensity is not greater than when 

sampling at lower thresholds (figure 1 a and b and 2 a and b). This provides significant 

benefits for grain storage manages, as there is not a requirement to take more samples, or 

inspect individual samples independently. Rather, the sampler need only count how many 

insects are in the total sample amount taken. It is important to recognise however, that the 

threshold selected is directly related to the density of insects that is to be targeted. For 

example, if the mean density of insects to be targeted was 5 (λ = 5) over a portion of the lot, 

setting a threshold of 5 or greater would result in substantial increase in samples for no 
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added detection benefit. This occurs as the density of insect decreases the probability of 

detecting multiple insects within a sample also decreases, and hence the number of samples 

required to detect that multiple insect will increase. As such, the detection threshold needs 

to be optimised in relation to the density of insects targeted within the infested portion of 

the lot.    

A number of sampling programmes have been developed for stored grains based on a fixed 

number of sample units to estimate insect density (Hagstrum et al. 1985, Subramanyam et 

al. 1993). These programmes have aided in the development of IPM strategies, however are 

species specific in parameterisation and require extensive data to generate parameter 

estimates. Subramanyam et al. (1997) developed a sequential sampling programme 

specifically for IPM. This approach, unlike approaches based on a fixed number of samples, 

considers the number of contaminated samples to maximise the probability of detecting 

insects. Thus each sample within the total grain volume sampled needs to be examined 

independently.  

Although best practice, the examination of sample units independently by end users would 

be difficult to initiate due to time limitations. This is of particular concern when grain is 

sampled prior to being moved from site to site via rail or road transportation, which 

typically occurs during the most hectic periods during the grain production and storage 

cycle. In such scenarios, examining each sample unit independently may not be viable.  In 

this paper we have demonstrated that detection probabilities can be maximised by setting a 

pre-determined threshold. This allows grain handlers not only to have flexibility in their 

sampling protocols but also negates the need to examine multiple sample units 

independently, rather designs are made based on a cumulative detection threshold. Using 
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the method proposed here, a fixed number of sample units may be drawn, grouped and 

examined, saving time, and costs whilst maximising detection at target threshold.   

The cost comparison presented on Table 1 illustrates that sampling can significantly lower 

cost per bunker even when only a single fumigation treatment is removed. This has 

significant implication to industry as cost associated with treatment are increasing due to 

associated labour charges and the cost of newer more efficacious fumigants. Further the 

cost associated with sampling is not significant such that savings could be achieved even if 

only a portion of bunkers were fumigated less than occurs on a calendar cycle.  

In the cost analysis example presented, zero percent insect mortality was assumed as was a 

constant grain temperature. As such cost savings could be substantially increased when the 

effects of insect mortality and alternative treatments where incorporated into the model.  

Additionally cost savings associated with the better management of fumigants to manage 

resistance where not considered. Phosphine resistance in grain beetles is a growing concern 

globally (Collins et al. 2002, Schlipalius et al. 2002). Poor fumigation strategies and 

frequency of fumigations has been seen to be the principle cause of phosphine resistance 

(Collins et al. 2000). Integrated pest management strategies based on robust statistical 

sampling plans can therefore also aid in managing pesticide resistance as they provide a 

mechanism to determine when treatments are actually needed and minimising chemical 

usage.     

This study highlights the need for flexible sampling programmes for use in IPM. Although a 

number of countries (including the USA) have predetermined thresholds in which IPM 

should be administered (Hagstrum et al. 1999), a number large grain producing nations 
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continue to base IPM on a zero tolerance threshold, originally initiated for export (Jeffries 

2000). Such strategies are not only inefficient but also jeopardise the longevity and efficacy 

of current available controls (i.e. fumigants) due to the build up of resistance from excessive 

use (Herron 1990), are an expensive means of control and are not based on a sound 

ecological framework. Further research needs to determine the economic thresholds for 

pests within particular regions followed by the implementation of an effective and accurate 

sampling model.          
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